模式识别学习笔记——第2章—2.4 两类错误率、Neyman-Pearson决策与ROC曲线

上一节学习了决策表,这一节我们在只有两类情况的决策表中继续深入研究。假设现在我们有两类状态分别是阳性阴性。可以绘制出如下的决策表:

截至《模式识别(第三版)》阳性阴性状态与决策的可能性关系

 这里,真阳性(True Positive,简记TP,后同)和真阴性是正确的分类,错误分类则是假阳性和假阴性两种情况。相应的就只有两种错误率分别是:假阳性率(假阳性样本占总阳性样本的比例)、假阴性样本(假阴性样本占总阴性样本的比例)

在评价一种检测方法时,经常用的两个概念是灵敏度(sensitivity)和特异度(specificity)。可以用如下公式表示灵敏度Sn和特异度Sp:

Sn=\frac{TP}{TP+FN}

Sp=\frac{TN}{TN+FP}

注意:上面公式用到的符号表示的不是风险,而是样本个数。

从公式很容易看出,Sn表示在真正的阳性样本中决策出真阳性的比例;Sp表示在真正的阴性样本中决策出真阴性的比例。通俗点就是它们分别表示了所研究的方法能够把阳性样本正确识别出来的能力和阴性样本正确判断出来的能力。在医学应用的情景下,一种诊断方法灵敏度高表示它能把有病的人都正确诊断出来,而特异性高则表示它不易把无病的人误诊为有病。

灵敏度和特异度是一对矛盾,如果某种方法把所有来检测的人(N)都说成是有病,此时得出的结果是:TP+FP=NTN+FN=0 。那么它不会错过任何一个真正的病人,所以灵敏度是100%;但却把所有健康人误诊为有病,则特异性为0% 。相反,如果把所有人都诊断为无病,那么他自然就不会误诊,特异性就为100% 。

在统计学种,假阳性被称作第一类错误;假阴性被称作第二类错误。第一类错误率(假阳性率)用\alpha表示,指真实的阴性样本中被错误判断为阳性的比例;第二类错误率(假阴性率)用\beta表示,指真实的阳性样本中被错误判断为阴性的比例。细心的同学会发现,灵敏度其实可以叫做真阳性率,特异度可以叫做真阴性率。显然,我们有

Sn=1-\beta

Sp=1-\alpha

那么到底哪个是阳性哪个是阴性,全靠研究者自己来定。对于相同问题,不同人的第一类错误率可能会不同。

有时候,我们希望在保证一类错误率为一个固定值的情况下确保另一项错误率尽可能低,这就是Neyman-Pearson决策。举个医院的例子:癌症早期不易被检查出来,但却是治疗癌症的最佳时期,因此应要求尽量把所有的阳性检测出来,所以应确保真阳性率尽可能高,即灵敏度达到99.9%(第二类错误率、假阴性率为0.1%),在次前提下再追求误将把无病诊断为有病的概率,即第一类错误率低、真阴性率(特异度)高。假设如下情况:

w_1:类别为阴性

w_2:类别为阳性

第一类错误率(假阳性率):P_1(e)=\int _{R_2}p(\vec{x}|w_1)d\vec{x}

第二类错误率(假阴性率):P_2(e)=\int _{R_1}p(\vec{x}|w_2)d\vec{x}

根据要求可以列出如下式子:

minP_1(e)\\ s.t.P_2(e)-\varepsilon _0=0

上式就是所谓“固定一类错误率,使另一类错误率尽可能小”的决策。(Neyman-Pearson 决策)

解决这个问题需要应用拉格朗日乘子法。很多小伙伴包括我自己在一看到拉格朗日乘子法就吓出一身冷汗,因为完全不知道这个方法是怎么用的。不需要惊慌,这里提供另一位博主写的有关这个方法简单易懂的拉格朗日乘子法解释。看完之后肯定会茅塞顿开!

利用拉格朗日乘子法把上式的有约束条件转化为下面这个无约束条件问题:

minL(\vec{x},\lambda)=P_1(e)+\lambda (P_2(e)-\varepsilon _0)

假设我们现在只讨论两类情况,分别有两个决策区域R_1R_2。两个决策区域之间有一x个边界称作决策边界或决策面,如果样本\vec{x}只有一个特性,那么边界就是一个点t。参考下面这张图、

有这样一个性质:\int _{R_2}p(x|w_1)dx=1-\int_{R_1}p(x|w1)dx 

可以得到:

P_1(e)+\lambda (P_2(e)-\varepsilon _0)\\ =\int_{R_2}p(x|w1)dx+\lambda[\int_{R_1}p(x|w_2)dx-\varepsilon _0]\\ =(1-\lambda \varepsilon_0)+\int_{R_1}[\lambda p(x|w_2)-p(x|w_1)]dx

上式分别对x\lambda求偏导置0得到下列式子联立:

\begin{cases} \lambda=\frac{p(x|w_1)}{p(x|w_2)]}\\ \int _{R_1}p(x|w_2)dx=\varepsilon_0 \end{cases}

对上式求解可以得到我们期望的边界t。其实将上式的第一个式子写为:\lambda=\frac{p(t|w_1)}{p(t|w_2)]}会更好理解,所求的得\lambda是一个阈值。

要使minL(\vec{x},\lambda)达到最小,应让\int_{R_1}[\lambda p(x|w_2)-p(x|w_1)]dx内积分项全为负值(否则可以通过把非负的区域划出R_1使L(\vec{x},\lambda)更小),因此如果决策R_1应该是所有使\lambda p(x|w_2)-p(x|w_1)<0,成立的x组成的区域。所以,决策规则是:

l(x)=\frac{p(x|w_1)}{p(x|w_2)}>\lambda,则x\in w_1;反之x\in w_2


我第一次学完之后感觉有一点迷糊不知道到底在求什么。现在我们总结一下整体的过程,让思路更加明了。

紧跟时事的举个例子。我们得到了一个核酸检测的样本,得到了一组数据\vec{x}用于决策患者是新冠阳性还是阴性。为了尽量不漏掉一个新冠患者,我们要让第二类错误率(假阴性率)尽量的小。同时,也保持第一类错误率在一个低水平。这样就得到式子:

minP_1(e)\\ s.t.P_2(e)-\varepsilon _0=0

 用拉格朗日乘子法解出阳性和阴性的分界线t,那么就可以通过比较样本\vec{x}和分界线t来决策应当将样本\vec{x}决策为阳性还是阴性啦!具体怎么求解这个分界线,就是看上面的过程了。


在实践中,很多情况下(高维度)很难求得\lambda,需要用到数值方法求解。可以用 最小错误率贝叶斯决策中的似然比密度函数来确定\lambda值。已知似然比为l(x)=\frac{p(\vec{x}|w_1)}{p(\vec{x}|w_2)},那么我们定义似然比密度函数为p(l|w_2)

这个似然比密度函数是个什么东西曾经纠结了我很久,怕有些小伙伴也在这里思考很久,这里详细讲一下。

l(x)=\frac{p(\vec{x}|w_1)}{p(\vec{x}|w_2)}>\lambda=\frac{p(w_2)}{p(w_1)}, 则\vec{x}\in w_1

上面是似然比的用处,即当l\in(0,\lambda)时将样本决策为w_1类,这里很好理解。那么p(l|w_2)意思就是在已知\vec{x}\in w_2的情况下似然比l(\vec{x})的分布。为了更好理解下面这个公式

\int ^\lambda _0 p(l|w_2)dl=Sn

可以画图理解:

 上图可以清晰看到似然比密度函数p(l|w_2)l=\lambda分为黄、灰两块区域。黄色区域代表的是l<\lambda的情况,此时会将样本x决策为w_2类。什么意思?就是说我们正确的将一个w_2的样本决策为了w_2类!!用我们刚学完的知识(如果w_2代表阳性),\int ^\lambda _0 p(l|w_2)dl就是灵敏度(真阳性率呀)。

 那么我们就可以得出:

P_2(e)=1-\int ^\lambda _0 p(l|w_2)dl

由于p(l|w_2)\geqslant 0P_2(e)是关于\lambda的单调递减函数。因此只需要不断改变\lambda的值,就可以寻找到一个合适的\lambda值,使得它刚好能满足P_2(e)=\varepsilon的条件,又使P_1(e)尽可能小!


已经介绍了三种分类决策方法了,那么如何评价一个决策方法呢?这就用到ROC曲线啦。

 ROC区线很坐标是假阳性率、纵坐标是真阳性率。直接记为真、假阳性率很好理解ROC图。在远点处代表的意思是将所有样本都分到了阴性类别中;同理,右上角的点指所有样本都被规为了阳性。那么这个曲线是如何绘制的呢?

以最小错误率贝叶斯决策为例。我们可以将决策写成:

若 l(x)=\frac{p(\vec{x}|w_1)}{p(\vec{x}|w_2)}>\lambda =\frac{P(w_2)}{P(w_1)},则x \in w_1;反之x\in w_2

\lambda就是似然比阈值,我们通过不断改变似然比阈值\lambda计算出决策边界t。(我的理解是计算\frac{p(\vec{x}|w_1)}{p(\vec{x}|w_2)}=\lambda得到\vec{x^*}=\mathbf{t})再利用边界t计算错误率

P_1(e)=\int _{R_2}p(\vec{x}|w_1)d\vec{x}

P_2(e)=\int _{R_1}p(\vec{x}|w_2)d\vec{x}

计算得到一组真阳性率和假阳性率。

 以此不断改变\lambda,得到连续的一条曲线便是ROC曲线。

为了方便比较ROC曲线,可以用曲线下的(相对)面积(AUC)来定量地衡量方法的性能。AUC最大为1,就是整个正方形的面积。AUC越大,越接近于1,方法的性能越好。

HS_Jack_ZZZ
关注 关注
  • 13
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Neyman-Pearson决策
林景的博客
09-12 4490
Neyman-Pearson决策 前导知识: 【贝叶斯决策理论】 【贝叶斯决策中的两类错误率分析】 1. 决策的引入 在某些应用中,有时希望保证某一类错误率为一个固定水平,在此前提下再考虑另一类错误率尽可能低。比如,如果检测出某一目标或者诊断出某种疾病非常重要,可能会要求确保漏报率即第二类错误率达到某一水平ε0\varepsilon_0ε0​(比如0.1%,即灵敏度99.9%),在此前提下再追求误报率即第一类错误率尽可能低(特异性尽可能高)。 如果把w1w_1w1​类看成是阴性而把w2w_2w2​类看成
基于Neyman-Pearson的HEVC编码的早期模式决策
03-23
基于Neyman-Pearson的HEVC编码的早期模式决策
Neyman-Pearson 奈曼-皮尔逊决策分析
风雨不知归
10-25 2542
Neyman-Pearson 奈曼-皮尔逊决策分析
模式识别——统计决策方法——Neyman-Pearson决策规则
m0_62895602的博客
10-06 406
如果与最小错误率决策规则相对比,可以看出Neyman-Pearson决策规则也是以似然比为基础的,但两者所使用的阈值不同。作决策,则很可能使实际的决策效果有较大的错误率或较大风险。能否在这种情况下,找到一种合适的分类器设计,使其最大可能的风险为最小。换句话说,如果先验概率值在教大范围内变化,就可能产生的最大风险而是最小的。​ 之前讨论的最小错误率或最小风险决策方法都是在先验概率已知的条件下进行的,先验概率的数值对决策有很密切的关系。,而Neyman-Pearson是由方程组的解获得的一个常数入。
2.3_两类错误率Neyman_Pearson决策ROC曲线
最新发布
2301_79449205的博客
12-15 982
研究两类错误率,将样本分为阳性(正样本)和阴性(负样本);那么将样本分错就有两类情况,一是将阳性样本分成了阴性(即假阴);二是将阴性样本分成了阳性(假阳)
两类错误率Neyman-Pearson 决策与 ROC 曲线
laofoye99的博客
09-05 1002
两类错误率Neyman-Pearson 决策与 ROC 曲线
最小错误概率准则和Neyman-Pearson
12-24
用最小错误概率准则和Neyman-Pearson准则对随机序列进行检测估计。
Neyman-Pearson-detection.rar_bayes_neyman_neyman pearson_信号检测_信号
07-14
我是刚上研一的小虾米,也不知道传些啥。文档是我们信号检测与估计课下的MATLAB仿真。希望对大家有所帮助。
Neyman_Pearson.rar_JFY_NEYMAN-PEARSON_NeymanPearson4_neyman_neym
07-14
针对频谱检测,采用奈曼-皮尔森算法对其进行优化,得到不错的检测性能和检测阈值,是一个比较不错的算法。
matlab怎样复制代码到word-NPFS:使用Neyman-Pearson假设检验来识别重要变量的子集选择事后检验的实现
05-26
基于Neyman-Pearson的特征选择(NPFS)事后测试 特征子集选择问题的类型要求在运行选择算法之前指定子集的大小。 NPFS根据base子集选择算法的决策来确定适当数量的要素,以选择给定的初始起点。 NPFS使用FEAST功能...
模式识别与机器学习·第二——统计判别
qq_34734252的博客
07-17 867
模式识别与机器学习·第二——统计判别统计判别的意义贝叶斯判别贝叶斯最小风险判别两类(M=2)情况的贝叶斯最小风险判别多类(M类)情况的贝叶斯最小风险判别正态分布模式的贝叶斯分类器 统计判别的意义 模式识别的目的就是要确定某一个给定的模式样本属于哪一类。 可以通过对被识别对象的多次观察和测量,构成特征向量,并将其作为某一个判决规则的输入,按此规则来对样本进行分类。 在获取模式的观测值时,有些事物具...
模式识别--统计模式识别(5)
sunkaiand的博客
06-23 1013
统计模式识别——Bayes分类器(1)首先我们回顾一下前几节介绍的几个线性分类器垂直平分分类器:未经优化,错误率通常较大;感知器:优化(求线性可分样本集的解),最终错误率未知(条件苛刻,要求样本线性可分);最小平方误差:优化(样本集MSE的解),最终错误率未知(条件相对比较宽松,取消样本线性可分的要求);Bayes分类器1.问题提出之前几节介绍的分类器错误率都属于未知情况,很难做一个量化的描述,所...
风控中策略规则发现的两种模型方法
weixin_45545159的博客
10-19 785
风控中策略规则发现的两种模型方法
【统计学习】5分钟了解假设检验中的第一类错误和第二类错误
小哲的博客
04-02 8301
假设检验是数据科学中一个非常重要的概念。统计的力量使我们能够对总体做出假设,观察数据样本以使我们能够拒绝或不拒绝我们的假设并得出结论。假设检验有两种可能的错误——Type-I错误和Type-II错误。假设一个中性 H0 → 观察数据(将观察到的 P 值与预先确定的 alpha 水平进行比较)→ 拒绝或不拒绝 H0。Type-I错误:False-PositiveType-II错误:False-NegativeType-I 和 Type-II 错误相互影响相反。减少一个总是增加另一个,反之亦然。
概率统计23——假设检验理论(2)
我是8位的
03-27 2270
假设检验实际上是用反证法做出非对即错的判断:先假定原假设是对的,然后将抽样数据代入相应的分布中去验证,观察原假设的数值是落在接受域还是拒绝域,由此做出是接受还是拒绝原假设的判断。 值得注意的是,不同于以往严格的数学证明,假设检验是建立在小概率事件原理的基础之上。由于小概率事件也有可能发生,因此并不能百分之百确定原假设一定不成立,也就是说,原假设也有判断错误的时候。 两种错误类型 假设检验有两...
以贝叶斯决策为核心的统计决策基本思想和原理
闭关修炼——暂退
09-21 8795
本文主要讲述作为监督模式识别理论基础的贝叶斯决策理论及典型决策方法,包括在正态分布下的决策函数形式,并通过实例介绍了离散情况下用马尔科夫模型进行统计决策的方法。 1 硬币引例引出相关概念 分类可以看作是一种决策,即我们根据观测对样本做出应归属哪一类的决策。 本文先从硬币分类实例入手,介绍统计决策方法的相关概念。 1.1 先验概率 假定我手里握着握着一枚硬币,让你猜是多少钱的硬币,这其实就看以看作是一个分类决策问题:你需要从各种可能的硬币中做出一个决策。如果我只告诉你这枚硬币只可能是一角或者五角.
假设检验的两类错误
weixin_43352637的博客
08-04 4514
弃真错误也叫第I类错误或α错误:它是指 原假设实际上是真的,但通过样本估计总体后,拒绝了原假设。明显这是错误的,我们拒绝了真实的原假设,所以叫弃真错误,这个错误的概率我们记为α。这个值也是显著性水平,在假设检验之前我们会规定这个概率的大小。 取伪错误也叫第II类错误或β错误:它是指 原假设实际上假的,但通过样本估计总体后,接受了原假设。明显者是错误的,我们接受的原假设实际上是假的,所以叫取伪错误,这个错误的概率我们记为β。 我们把第一类错误出现的概率用α表示。这个α,就是Significance Level
第一型错误与第二型错误( I 型错误 II 型错误)
热门推荐
wangprince2017
02-26 5万+
简介 我们不妨先看下定义: 第一类错误:原假设是正确的,却拒绝了原假设。 第二类错误:原假设是错误的,却没有拒绝原假设。 第一类错误即 I 型错误是指拒绝了实际上成立的H0,为“弃真”的错误,其概率通常用α表示,这称为显著性水平。α可取单侧也可取双侧,可以根据需要确定α的大小,一般规定α=0.05或α=0.01。 第二类错误即 II 型错误是指不拒绝实际上不成立的H0,为“存伪”的错误,其概率通常用β表示。β只能取单尾,假设检验时一般不知道β的值,在一定条件下(如已知两总体的差值δ、样本含...
假阳率(第一类错误)、假阴率,召回率、精确率
jackylzh的专栏
10-06 2821
假阳率(第一类错误)、假阴率,召回率、精确率
neyman-pearson准则
10-03
Neyman-Pearson准则是一种用于二分类问题的决策准则。根据Neyman-Pearson准则,我们首先定义两个假设,即原假设(H0)和备择假设(H1)。然后,我们设定一个显著性水平(α)作为错误判定的概率阈值。根据Neyman-Pearson准则,我们要选择一个检测器,使得在原假设下,检测器能够最小化错误判定的概率,同时在备择假设下,检测器能够满足一个给定的概率条件。换句话说,Neyman-Pearson准则要求我们在保证特定错误概率的情况下,尽可能最小化另一种错误概率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 模式识别学习笔记——第2章 统计学习方法-2.2最小错误率贝叶斯决策 2797
  • 模式识别学习笔记——第2章 统计学习方法—2.3最小风险贝叶斯决策 2682
  • 模式识别中的最优分类超平面与线性支持向量机 2094
  • 模式识别学习笔记——第2章—2.4 两类错误率、Neyman-Pearson决策与ROC曲线 2068
  • 模式识别中的Fisher线性判别分析 964

最新评论

  • 模式识别学习笔记——第2章—2.4 两类错误率、Neyman-Pearson决策与ROC曲线

    张.cj: 首先,l和x并无差别,只是符号而已。 其次,p(l|w2)的含义应该为在w2类中,l的分布情况。注意,这里的l并没区分是w1还是w2类。而通过l(x)>lambda x∈w1,反之当l(x)<lambda x∈w2可知,若对p(l|w2)在(0,lambda)上积分,则表达的是在w2类中l被正确分为w2类的概率,即为sn。(这里积分域是(0,lambda)是因为lambda恒大于等于零)

  • 模式识别学习笔记——第2章 统计学习方法-2.5 正态分布时的统计决策

    普通网友: 写的很好,催更,感谢分享

  • 模式识别学习笔记——第2章—2.4 两类错误率、Neyman-Pearson决策与ROC曲线

    m0_74884793: 请问楼主,我还是没有理解似然比密度函数p(l|w2),这个有点抽象。l是关于x的两个条件概率密度的比值,那为什么l也可以作为随机变量,拥有概率密度呢?在x属于w2的情况下,l的概率密度又是什么?落实到具体问题,p(l|w2)应该怎么求?

  • 模式识别学习笔记——第2章—2.4 两类错误率、Neyman-Pearson决策与ROC曲线

    桃笑夭: 我只能说,比书上写的好多了,完美的覆盖了我想要的坑

大家在看

  • 2024华为OD机试真题-围棋的气-(C++/Python)-C卷D卷-100分 122
  • kubernetes部署dashboard
  • package.json文件详解 1485
  • 2024华为OD机试真题-堆内存申请-(C++/Python)-C卷D卷-100分 1
  • 【国赛赛题详解】2024年数学建模国赛ABCDEF题(点个关注,后续会更新)

最新文章

  • 模式识别中的最优分类超平面与线性支持向量机
  • 模式识别中的感知器
  • 模式识别中的Fisher线性判别分析
2022年10篇

目录

目录

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

4617作文网淀粉肠小王子日销售额涨超10倍罗斯否认插足凯特王妃婚姻让美丽中国“从细节出发”清明节放假3天调休1天男子给前妻转账 现任妻子起诉要回网友建议重庆地铁不准乘客携带菜筐月嫂回应掌掴婴儿是在赶虫子重庆警方辟谣“男子杀人焚尸”国产伟哥去年销售近13亿新的一天从800个哈欠开始男孩疑遭霸凌 家长讨说法被踢出群高中生被打伤下体休学 邯郸通报男子持台球杆殴打2名女店员被抓19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警两大学生合买彩票中奖一人不认账德国打算提及普京时仅用姓名山西省委原副书记商黎光被逮捕武汉大学樱花即将进入盛花期今日春分张家界的山上“长”满了韩国人?特朗普谈“凯特王妃P图照”王树国3次鞠躬告别西交大师生白宫:哈马斯三号人物被杀代拍被何赛飞拿着魔杖追着打315晚会后胖东来又人满为患了房客欠租失踪 房东直发愁倪萍分享减重40斤方法“重生之我在北大当嫡校长”槽头肉企业被曝光前生意红火手机成瘾是影响睡眠质量重要因素考生莫言也上北大硕士复试名单了妈妈回应孩子在校撞护栏坠楼网友洛杉矶偶遇贾玲呼北高速交通事故已致14人死亡西双版纳热带植物园回应蜉蝣大爆发男孩8年未见母亲被告知被遗忘张立群任西安交通大学校长恒大被罚41.75亿到底怎么缴沈阳一轿车冲入人行道致3死2伤奥运男篮美国塞尔维亚同组周杰伦一审败诉网易国标起草人:淀粉肠是低配版火腿肠外国人感慨凌晨的中国很安全男子被流浪猫绊倒 投喂者赔24万杨倩无缘巴黎奥运男子被猫抓伤后确诊“猫抓病”春分“立蛋”成功率更高?记者:伊万改变了国足氛围奥巴马现身唐宁街 黑色着装引猜测

4617作文网 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化